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The influence of  evaporation-condensation processes on the walls of  a cylindrical channel on the spatial distribution 

of  a molecular beam emerging from it is investigated. The case is considered when a phase transition is realized on 

a portion of  the channel surface. 

The problems of formation of molecular (or atomic) beams are topical in many fields of physicochemical investigations 

[1]. Besides the intensity and composition of a molecular beam it is also important to know its angular (spatial) distribution 

which, in particular, plays a significant part in obtaining thin layers of matter with a specified distribution in thickness required 

in many technological processes [2]. As is known [3-6], this distribution depends on many factors, among them the dimensions 

of a channel, from which the molecular beam emerges as well as heterogeneous processes realized on its walls. In the case when 

phase transitions take place on the inner surface of the channel; the temperature distribution along the channel proves to be an 

essential factor affecting the angular distribution of  particles, emerging from the channel [7]. It should als0 be noted that a 

variation of portions of the channel inner surface differing in the scattering pattern of a molecular beam, for example, there is a 

heterogeneous process on one of the channel portions, leading to the destruction (or generation) of particles, enables one to 

also control the angular distribution of the molecular beam going out of the channel [8]. 

In the proposed work we investigate the angular distribution of particles emerging from a cylindrical channel with a 

nonisothermal lateral surface, when both the above-mentioned cases are combined. The gas flow regime is assumed free 

molecular. 

We will consider a cylindrical channel with length L and radius R, along the walls of which the temperature drop is 

prescribed. Let some gas pressure be maintained at one end of the channel, while the condition of vacuum - at the other one. 

With certain relations of quantities, characterizing the system (the geometric dimensions of the channel, gas pressure, tempera- 

ture drop as well as physicochemical parameters, describing a phase transition), there may emerge a situation when one portion 

of the channel surface is impermeable for gas phase particles, whereas on the second portion there is a phase transition. The 

coordinate of the boundary line between these regions, dependent on the factors mentioned above, is determined in the course 

of the solution to the problem. The dependence of the angular distribution of particles emerging from the channel on the 

temperature drop manifests itself through a change in the position of the coordinate of the boundary line between the conden- 

sate-covered surface region and the clear one as well as in the intensity of the phase transit ionalong the condensate-covered 

portion of the surface. 

It should be noted that, depending on the direction of a temperature gradient, two cases may take place. If the tempera- 

ture decreases in the direction of the channel end adjacent to the volume, in which the condition of vacuum is maintained, the 

condensate-covered portion of the channel may be adjacent to the outlet end of the channel. In this case, for certain values of 

parameters, there may emerge three zones: a clean surface, a condensate-covered surface, and a clean surface again. With 

increasing temperature in the direction of the channel end, opening into the vacuum, a condensate-covered surface zone may 

form at the inlet end of the channel (in this case there exist only two zones). First we will consider the first case. 
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Let the temperature along the channel wall vary by the law 

T ~ - - T o  X ) = T o ( l + ~ x ) ,  (1) 
T = To . 1 + To L 

where x = X/L is a dimensionless coordinate, directed along the channel axis; T O and T 1 (T 1 < To) are the channel wall 

temperatures at x = 0 and x = 1, respectively; further we assume [fl[ << 1. 

As is well known [9], vapor condensation from a molecular beam of the specified intensity occurs when the substrate 

temperature is lower than the critical temperature. For simplicity we further assume that the heat of phase transition does not 

depend on the properties of the substrate and is equal to the evaporation heat of a massive layer of matter; we also do not 

consider the processes of two-dimensional nucleation preceding condensation. We will find the coordinate of the boundary line 

x c between the bare portion of the channel surface and that covered with condensate, supposing that the entire surface from x c 

to 1 is covered with condensate (this condition was checked while solving the problem); we assume the layer thickness much 

smaller than the channel radius. Tile value of x c is determined from the equality condition of densities of  one-way flows due to 

the condensation acJ-(Xc) and evaporation j(Xc): 

~ c J -  (xc) = j (x~), (2) 

where J-(xc) is the density of the particle flux incident on the channel surface in the vicinity of the point xc; a c is the condensing 

coefficient. 

For J-(xc) in view of  the condensate-covered portion of the surface we have: 

x c 1 

J = N~,K (xc) + .! 11 (x) I(1 (x: c -  x) dx + .! [2 (x) K1 (x Xc) dx, (3) 
0 X:C 

where N O is the density of the particle flux entering the channel via its end at x = 0. The functions K(x) and Kl(x ) characterize 

the probability of a fall of particles from one element of the surface onto the other [1] (we further assume that the particles 

entering the channel and scattered by the wall are characterized by the Maxwell distribution function). The densities of the 

particle fluxes Ii(x ), Ie(x ), escaping from the lateral channel surface in the regions from 0 to x c and from x c to 1, respectively, are 

found from solving the system of equations 

x C 1 

I1 (x) = ~Vo1((x) + ~ h (~') ~'~ (Ix- x'l dx' + ~ h (x') K1 (~ ' -  x) ax', 
0 % 

I~ (x) = ] (x) + (1 - -  ~ )  [NoK(x)_ + i ] (' I~ (x')G (x --  x') dx': + I~ (x') G (Ix --  x'l) dx'. 
0 x: e 

(4) 

(5) 

For j(x) within the framework of a simple one-stage evaporation model the expression follows [10] 

] (x) = A exp { Q } , (6) 
leT (x) 

where Q is the energy of particle evaporation from the condensate surface; T is the condensate surface temperature;, k is the 

Boltzmann constant. The preexponential factor A depends on the specific model employed to describe the kinetics of evapora- 

tion [10]. 

On the other hand, for j(x) one often uses the formula [10] 

] = __ aeP~ (T) (7) 
( 2r~mk T) l / 2 ' 
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where Pe(T) is the pressure of saturated vapor of the evaporating matter; a e is the coefficient of  evaporation defined as a ratio 

of the rate of evaporation into vacuum found experimentally to Pe(T)/(2~mkT)l/2 [10]. We will note that (7) can also be 

rewritten in a form analogous to (6); the preexponential factor in this case will include the coefficient of evaporation a e. Because 

of a fairly weak dependence on T, for simplicity we will further assume the preexponential factor (both in (6) and (7)) to be 

independent of temperature. 

In approximating K(x) and Kl(X ) by the exponential expressions [6], by analogy with [8] one can obtain the analytical 

solution of the system (4), (5). For the corresponding dimensionless flux densities it(x ) and 12(x), referred to the value of j at 

temperature T1, in view of (1), (6) we have 

where 

ix (x) = al x + a2, 

7= (x) = a3 exp {'l/~-ctx} + a~ exp { - -  l/~-elx} + V exp {sx}, 

S = 
Q ( T x - - T o ) ;  l L e x p { - - s } ( s 2 - - / ~ )  

kT~ R s ~ - -  ~zcl ~ 

(8) 

(9) 

The constants al,  a2, a3, and a a are found by substituting (8), (9) into the system of equations (4), (5) (nondimensional- 

ized with respect to j(TI)): 

g +  ax ~ - - a  2 = O; 
l 

( ) xeexp { "  lxc} + --f- exp {- -  Ixz} al+ exp { - -  lxc} a~ - -  

__ e x p { / ( ' l / ~ ,  e -  1 ) } - - e x p . { / ( ' I / ~ c - -  l )xc} a t +  

1 

+ e x p { - -  l ( ' l / ~ e +  1)} - -  exp { - -  l ( l / ~ c  + 1)xc} 
a ~ - -  

[~, 

s - - I  

g + (xc, exp { txci} - -  

[exp {s --- l} - -  exp {(s - -  l) xc}] = 0; 

1. exp{lxe} 4 _ @ ) a x  +(exp{lxe}__ l)a2__ 
1 

exp {(V~c-}- 1) txc} 

17 
s + l  

Va ~- exp {(1 ---~/~c) Ixe} 
i - -  a i - -  V -l 

- -  exp { (s+ l)xh } = O, 

(lO) 

exp'{-I/~cil} exp { ...... I /~c /}  4- ly a~ - - e x p { s }  = O, Va- -I a 3 -  1/ +1 " 

where g = N0/j(T1). 
Taking the above into account, for the coordinate of the boundary line from (2), (3), and (8)-(10) we obtain the 

equation 

s = e x p { ( s +  "l/~e/)Xc,--s} [exp{2-l/~-elxe} exp {21Z~c/} ] 
82 Oket 2 @ ~ e @ a3 @ - -  ~ e - -  1 ( V ~ - -  1) = �9 

(11) 

+ ac#Xp { ] /~e /}  l ( s + t )  --0. 
/ - -  

l/~z c - -  ! s 2 -- O~el ~ 
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Fig. 1. Coord ina te  of the boundary  line between the condensate-covered  and 

bare  zones x c vs condensing coefficient ac; l = 4, s = - 2 . 5 :  I) g = 30; II) 20; 

III) 10; dashed l ine refers to the case a e = a c = a ,  ~ = 7. 

Analysis of  the numer ica l  so lu t ion  of  Eq. (11) shows that  with an increase of the condensing coefficient a c at  fixed values of  the 

other  quant i t ies  x c decreases (i.e., the condensate-covered por t ion  of the channel  surface increases) (Fig. 1). If the system of  

equat ions (4), (5) is referred to Pe(T1) -(27~mkT1)-l/2 ra ther  than to the density of the flux of evapora t ing  molecules  at  tempera-  

ture T 1 (as was done  above)  using expression (7) for j, in (11) there  appears  one  more  pa rame te r  - the coefficient of  evapora-  

tkm a e, The dependence  of  x c on g in this case can be reduced to the dependence  on a e at  a fixed value  of  g = 

[N0/Pe(T1)](2zmkT1) 1/2. It is in teres t ing to note  that  if we assume a c = a e = a here, then with increasing a the  zone covered 

with condensa te  decreases ( the dashed curve in Fig. 1). With  increasing a = a e = % the condensa te-covered  por t ion  of  the 

surface, on the  one  hand,  evapora tes  the part icles more,  but, on the o ther  hand, reflects them less. A decrease  in the reflectivity 

of the condensa te  in this case leads to a decrease  in the par t ic le  flux falling onto  the surface e lement  in the vicinity of the point  

x c and, correspondingly ,  to a decrease  in the condensing part ic le  flux. 

W e  will  no te  that  when a c = 1, 12 = j, and the equat ion  for x c is found directly f rom (2), (4). 

When  x c is found, the  angular  dis t r ibut ion of  the molecular  flow f(0), character ized by the ra t io  of  the par t ic le  flux 

emerging f rom the channel  at  the angle  0 to its axis to the par t ic le  flux emerging in the di rect ion of  the axis, can be wri t ten in 

the form [8] 

{ [ . /ltgO, ltgO( 12 ) ~ / 2 ]  f(O) I - -  2 sm i - - - j  4-. 1 tg20 ~ arc -~ 
n ~ 2 ~ 2 4 

1 
T I ' - * c ' t g e ( '  4I ) [,(x) 

4'- ,[ ~ n ! g (1-U I2t2) ~/~dt + 
1 7tz o 

q- o f ( _ _ _ ~ g ,  4 l  )7~  ( x ) ( l - - - l ~ t ' ) I / 2 d  `} cos O 

1 
y ( !  Xc) tg  0 

for 0 _< 01, where  01 = tan -1 (2/l) and t = [(1 - x) tan0]/2. 

Fo r  01< 0 _< 02, where  02 = arc tan [2/l(1 - xk) ] the function f(0) takes the form: 

! / l  ~ " 

- j . -  

0 

f 
T ( 1 - - X c ) t g  0 
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Fig. 2. Angular  dis t r ibut ion of particles emerging from a cylindrical channel  vs condensing 

factor a c, l = 4, s = -2 .5 ,  g = 20: I) impermeable surface, II) a c = 0.5, III) 0.7, IV) 0.8. 0, deg. 

Fig. 3. Coordinate  of the boundary  l ine between the condensate-covered and bare zones x c vs 

condensing coefficient a c at l = 4: I) s = 0.01, g = 20, II) 1.5 and 20, III) 0.1 and 5. 
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Fig. 4. Angular  distr ibution of particles emerging from a cy- 

lindrical channel  at the opposi te  signs of s; t = 4: I) imper- 

meable  surface, II) g = 20, a c = 0.4, s = -2 .5 ;  III) g = 20, 

a c = 0.4, s = 2.5, dashed curves refer to the case of a e = 

a c =  1 ; ~ = g =  15; IV) s = - 2 . 5 ; V ) s = 2 . 5 .  

When 0 > 02 for f(0) we have 

f'(0) ~ { i  ( - - - - -~)[ '2  (XL( 1 --{.~t~)ll2dt } cos 0. 
~/t g 

Figure 2 gives the angular  dis t r ibut ion of particles emerging from a cylindrical channel  for the case of decreasing 

temperature  towards the out le t  end of the channel.  For  comparison the angular  dis t r ibut ion of particles emerging from the 

channel  becomes narrower with an increase of the condensing coefficient a c. Calculations show that an increase in the tempera- 

ture drop along the channel  leads to a broadening of the beam. The same tendencies also hold for the case of a c = a e = a at 

= const. However,  the dependence  of  f on  a in this case is much weaker (the curves are closer to each other).  
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For the case when the temperature increases towards the outlet end of the channel and the condensate-covered portion 

of the surface is adjacent to its inlet end (all the quantities being nondimensionalized with respect to j(T0) and x e defining the 

condensate-covered portion of the surface), the value of x c will increase with increasing a c and decrease with growing s (Fig. 3). 

At fairly large values of g = N0/j(T0) and small temperature drops the dependence of x c on a c can pass through the maximum 

(curve I in Fig. 3). This is explained by the fact that in the given case there are two competing processes. With growing a c the 

probability of condensation of molecules in the vicinity of the point x c increases, however, the number of molecules entering the 

channel and reaching the point x c decreases due to their condensation on the condensate-covered section of the surface. 

Figure 4 gives directivity diagrams for the opposite temperature drops at s = 2.5 and s = -2.5.  It is evident from the 

figure that at the specified parameters the angular distribution proves to be narrower as compared with the angular distribution 

of particles emerging from the channel with impermeable wails in all cases. 

Thus, by varying the temperature along the channel wall (which involves a change in the size of the condensate-covered 

portion of the lateral surface of the channel) one can affect the directivity diagram of a molecular beam emerging from the 

channel. This permits, in its turn, the control and distribution of the particle flux, incident onto the substrate at the outlet end 

of the channel. It should be noted that in the case of a binary mixture of gases, one of the components can condense on the 

channel walls, while for the other the channel walls (as well as the condensate formed on them) are impermeable, a change in 

the position of a boundary line between the condensate-covered and clean surfaces involves a change in the relation of compo- 

nent streams emerging from the channel, and in their spatial distribution [11]. Taking into account the known analogy between 

a free molecular flow of gas and radiation transfer, one can calculate the spatial distribution of the radiation from the channel, 

which is also connected with the radiation flux distribution across the substrate, located at a distance from the outlet cross 

section of the channel [12]. This issue can appear to be topical in vacuum application of thin films, since the temperature of the 

phase transition surface will depend on the energy flux incident onto the given surface. 

In conclusion we will make some comments on the methods of refining the solutions obtained by the exponential 

approximation of the functions K(x) and Kl(X ). The given method provides the possibility to obtain approximate solutions of 

many problems. However, as the ratio of the cylindrical channel length to its radius increases, the exactness of  the solution de- 

teriorates. The estimation of the error of the method in question is given in the work [13], in which it is shown that the error in 

the magnitude of the molecular flow intensity at the end of a long tube does not exceed 12.5%, and by the iteration method, 

taking the obtained analytical solutions for a zero approximation, one can significantly improve the exactness. The work [14], 

where the problem of radiation energy transfer within a tube is investigated, presents another method of refinement of the 

solution, obtained in approximating K and K 1 by approximate expressions, whose employment leads to the results which differ 

from numerical calculations by no more than 1%. We will also point out that use of several approximating exponents instead of 

one improves the accuracy of results. 
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